Автовождение

Полная версия: Вселенная
Вы просматриваете yпpощеннyю веpсию форума. Пеpейти к полной веpсии.
Марсианские аномалии - следы пришельцев?

Сведения о Марсе:

Диаметр - 6794 км
Масса - 0,1074 Земной
Период вращения - 24 ч. 37 мин. 22,6 сек.
Период обращения - 686,97 суток
Атмосфера - разряженная, 95% углекислого газа, 4% приходится на азот и аргон, 1% на кислород и водяной пар. Ветры достигают скорости 100 м/с
Температура - средняя: -40° С; вообще колеблется от +20° до -125° С.

На полюсах планеты существуют полярные шапки. С наступлениям весны полярная шапка начинает "съеживатся", оставляя за собой постепенно исчезающие островки льда. В то же время от полюсов к экватору распостраняется так называемая волна потемнения (в 19 столетии ученые предполагали, что темные участки на поверхности планеты, появляющиеся весной являются растительностью). Современные теории объясняют это тем, что весенние ветры переносят вдоль меридианов большие массы грунта с различными отражательными свойствами.

У Марса имеются два спутника Фобос и Деймос. Фобос имеет размеры 28*20*18 км. Деймос меньше, его размеры 16*12*10 км. Состоят они из одной и той же темной породы, похожей на вещество некоторых метиоритов и астероидов. Поверхность изрыта метеоритными кратерами. Крупнейший кратер на Фобосе - Стикни, его диаметр 10 км. Предполагается что спутники Марса - астероиды, захваченные планетой из Пояса Астероидов.
Ученые, пытающиеся определить массу спутников пришли к неожиданному выводу - хотя спутники Марса имеют большие размеры, они очень легкие. Известный астрофизик И. О. Шкловский выдвинул гипотезу, согласно которой спутники полые внутри и, следовательно, имеют исскуственное происхождение.

Исследования Марса

Как только СССР и США получили возможность запускать на орбиту Земли исскуственные спутники, у них возникло желание исследовать ближайшие к Земле планеты...

Марс был выбран не случайно: он был на довольно близком расстоянии от Земли, что не потребовало бы больших затрат топлива, люди давно хотели узнать существует ли на Марсе жизнь сейчас или была ли она в прошлом, получить бесценную информацию о наличии на планете воды, полезных ископаемых, химического состава атмосферы и т.д.

В 1960 году СССР попытался отправить к Марсу межпланетную станцию. Но спутник не сумел выйти даже на околоземную орбиту и упал в Тихий океан. Следующая попытка также была неудачной.

Однако с этого момента каждые 26 месяцев (через такой промежуток времени Земля и Марс сближаются и космические аппараты могут долететь до Марса за кратчайшее время с наименьшей затратой топлива) СССР и США пытались запустить исследовательские космические аппараты к Марсу.

В 1965 году межпланетная станция "Маринер" пролетела в десяти тысячах километров от Марса. "Маринер-4", запущенный в 1964 г., первым успешно достиг Марса и доказал наличие на этой планете кратеров. Вслед за ним этот путь проделали "Маринер-6" и -7" в 1969 г. В 1971 г. на орбиту вокруг Марса был запущен "Маринер-9", который передал на Землю свыше 7000 изображений. "Маринер-10" в 1974 г. впервые осуществил одновременное исследование двух планет. В программе его полета были три встречи с Меркурием, в ходе которых было получено 10000 изображений, а также пролет вблизи Венеры. В целом серия "Маринер" обеспечила успешное выполнение семи проектов.

В 1971 году Советскому союзу удалось посадить на поверхность планеты аппарат "Марс-3". После долгих минут молчания станция вышла на связь, ученые уже радовались успеху и готовились к приему бесценной информации, но через 20 секунд после установления связи станция замолкла навсегда. Попытки ученых восстановить связь никчему не привели. Станция успела передать всего несколько снимков. Сложилось такое впечатление, будто станцию накрыло песчаной бурей или взрывом...

В 1976 году США удалось осуществить проект "Викинг". Станции "Викинг-1" и "Викинг-2" совершили посадки на поверхность Марса и передали телевизионное изображение окрестностей.

В 1988 году советские межпланетные станции "Фобос-1" и "Фобос-2" приблизились к Марсу. Все шло по плану и ничто не предвещало неприятностей, однако обе станции пропали. "Фобос-1" исчез даже не отправив на Землю ни бита информации. "Фобос-2" все таки смог приблизится к марсианскому спутнику но прервал связь с Землей, как только начал выполнять программу исследований. Он "прожил" около 20 секунд, однако успел передать на Землю изображение неизвестного линзовидного объекта.

В 1993 году уже США потерпели неудачу - их самая дорогая за всю историю космических исследований станция "Марс Обсервер" просто исчезла. Приблизившись к Марсу, за сутки до начала исследований она пропала. Официальный представитель НАСА заявил что при подлете к марсианской орбите на "Обсервере" взорвались топливные баки.

В 1996 году Россия создала за 100 милионов долларов два комплекса для бурения почвы, две платформы для работы на поверхности планеты, орбитальную станцию, которая должна была, обращаясь вокруг планеты и собирать ценную информацию... Но снова неудача - все это оборудование упало в Тихий океан.

В этом же году американцы запустили новый исследовательский аппарат к Марсу. В 1997 году на поверхность планеты опустился знаменитый "Пэтфайндер". Главной целью проекта была проверка дешевых средств запуска космического аппарата и нового транспортного средства, так называемого "ровера", который должен был опуститься на марсианскую поверхность. Этот 10-килограммовый миниатюрный "ровер" был назван "Соджорнером" (т.е."Временным жителем"). Он был оборудован специальными средствами для измерения химического состава поверхностных пород и почвы и фотографирования окрестностей места посадки в долине Арес. На Землю были переданы панорамные снимки окружающего ландшафта, и "Соджорнер" успешно совершил несколько экспедиций, пройдя в общей сложности около 80 м. Инструменты спускаемого аппарата вели мониторинг атмосферных условий на поверхности. В процессе парашютируемого спуска были измерены и параметры марсианской атмосферы.

В 1999 году американцы запустили сразу несколько исследовательских станций. Однако не суждено... Станция "Марс Клаймет Орбитер" сгорела в марсианской атмосфере, не передав никакой информации. После проведения проверки, специалисты НАСА выяснили что была допущена досадная ошибка, стоящая огромных денег. При расчете орбиты станции американские футы не были переведены в метрическую систему мер, и в таком виде данные были введены в программу станции, что и привело к потере станции.

"Марс Полар Лэндер" должен был совершить посадку 3 декабря 1999 года. Связь со станцией отключили на то время, пока она проходила бы через марсианскую атмосферу. Через 38 минут станция должна была выйти на связь, но не вышла. Американцы пытались связаться со станцией различными средствами: мощные радиотелескопы сканировали небо, орбитальная станция "Марс Глобал Сервейор" пыталась сфотографировать место предполагаемой посадки аппарата, но все попытки не увенчались успехом. Вскоре после этого NIMA предложила НАСА свою помощь. При помощи аппарата "Марс Глобал Сервейор", был заснят предполагаемый район посадки "Марс Полар Лэндер". Почти 15 месяцев лучшие люди NIMA работали с полученными снимками, прежде чем появились первые результаты. Специалисты, изучавшие снимки поверхности планеты, сообщили, что им удалось что-то обнаружить. Однако в НАСА считают что пока рано говорить о том, что специалисты NIMA обнаружили "Марс Полар Лэндер". Об этом можно будет говорить только после проведения более детальных съёмок подозрительного места.

Сейчас на орбите красной планеты находится единственная орбитальная станция, находящаяся в рабочем состоянии. "Марс Глобал Сервейор" до сих пор присылает очень полезную информацию о планете. Запуск аппарата состоялся 7 ноября 1996 г., причем достижение планеты планировалось на сентябрь 1997 г. АМС была успешно выведена на высокую эллиптическую орбиту вокруг Марса 11 сентября 1997 г. В последующие месяцы она должна быть постепенно переведена на почти круговую околополярную орбиту, с которой с марта 1998 г. по январь 2000 г. будет выполняться систематическое картирование планеты. "Марс Глобал Сервейор" сконструирован так, что после завершения проекта картирования он будет работать как спутник связи.
С помощью "Марс Глобал Сервейор" были получены следующие результаты:
- Обнаружены признаки появления воды на поверхности Марса в наше время (русла, следы потоков жидкости на краях кратеров).
- Обнаружены слоистые отложения, которые свидетельствуют о том, что в древности на Марсе были широко распространены водоемы
(озера).
- Получена первая достаточно надежная оценка количества воды, содержащейся в обеих марсианских полярных шапках -- примерно вдвое меньше, чем содержится в гренландском леднике на Земле.
- Топографические измерения выявили заметное понижение поверхности в направлении от южного полюса к северному, которое должно было определять направление переноса воды и осадков, а обширные равнины северного полушария, вероятно, представляют собой дно древнего океана.
- В Южном полушарии неожиданно были обнаружены сильно намагниченные участки коры, что указывает на быстрое остывание Марса в начале его истории.
- Построена первая модель коры Марса, учитывающая древние ударные депрессии и, возможно, разломы, скрытые под северной равниной.
- Исследовано распределение минерала гематита (красный железняк), свидетельствующий о гидротермальных условиях в прошлом, которые могли быть подобны тем, что имели место на Земле в тех местах, где зародилась жизнь.
- Получены многочисленные доказательства роли, которую играет пыль в преобразовании современного ландшафта Марса.
- Удалось значительно лучше понять динамику атмосферы Марса, провести мониторинг циклонов и исследовать суточное и годичное поведение облаков.
По результатам работы аппарата принято решение продлить его работу до апреля 2002 года.

К 2004 году планируется начало совместных исследований Марса японским зондом "Nozomi" и зондом Европейского Космического Агентства "Mars Express". Аппараты будут находится на перпендикулярных орбитах: "Nozomi" на полярной, а "Mars Express" - на экваториальной, вместе они будут исследовать атмосферу и климат красной планеты.

Совсем недавно ученые получили огромное количество информации, которая поможет ответить на многие вопросы...

На планете были найдены гигантские каналы, по которым в далеком прошлом могла течь вода, сейчас эти каналы скрыты под слоем вулканической лавы.
Согласно предварительным расчетам, эти каналы могли одновременно переносить объем воды, в 50 тысяч раз превышающей объем потока Амазонки и способный заполнить за два месяца три моря, равных Средиземноморскому.

Водяной лед был найден не только на полюсах, но и у экватора.

И главное, когда 25 лет назад на Землю вернулись аппараты "Викинг" с пробами грунта и ученые изучили его, были получены неутешительные результаты о присутствии жизни в прошлом и в те годы на планете... Однако, тщательно исследовав старые образцы и результаты предыдущих исследований, они пришли к выводу что на Марсе 25 лет назад была жизнь! Это заявление было сделано на основе старых результатов. 25 лет назад, сразу после поступления грунта его изучали 10 недель, обнаружилось что грунт выделял углекислый газ, тогда учёные заключили, что причина этого - идущая в нём химическая реакция. Но Джозеф Миллер, нейробиолог из Университета Калифорнии, предположил что газ - результат деятельности бактерий. Количество выделяемого газа циклически менялось, причём продолжительность цикла в точности соответствовала длине марсианских суток - 24,66 часа.
Лишним доказательством того, что это результаты деятельности живых организмов, а не обычная химическая реакция, явилось нагревание образца грунта до температуры 160oC. Выделение газа при этом резко снизилось, а затем и вовсе прекратилось. По мнению Миллера, высокая температура убила микроорганизмы.

Марсианские аномалии

Но вернемся в 1976 год. В июле "Викинг-1" производил съемку поверхности Марса в области Цидония (Cydonia) для определения места последующей посадки "Викинга-2". Он передал снимки поверхности планеты на Землю. Ученые были просто поражены - на поверхности были видны образования, напоминающие египетские пирамиды и лицо... Как только фотографии попали в прессу, моментально появились слухи, что американский космический аппарат обнаружил свидетельства существования жизни на Марсе. Официальные лица объяснили что пирамиды и лицо не что иное как игра света и тени...

Однако уже где-то в 1997 году НАСА провело повторное фотографирование района Цидония с помощью орбитальной станции "Марс Глобал Сервейор". Поразительно, но новые фотографии отобразили те же самые пирамиды и лицо. Было сделано более десятка снимков высокого разрешения района Цидония, а потом проведен тщательный анализ всех снимков, однако точного ответа на вопрос что собой представляют загадочные структуры - игра света и тени, природные образования или остатки древней цивилизации пока нет.

Многие люди уверены что пирамиды и лицо не являются природными образованиями. Правда, если за исскуственное происхождения марсианского "Лица", после тщательного анализа фотографий, можно еще по-спорить, то как можно объяснить образование природным путем пирамид? Они не похожи на результаты вулканической активности или на что нибудь другое. Если это просто вулканы, то не видно кратера, потоков лавы на стенках или вокруг них, и слишком правильная форма у этих вулканов: трех-, четырех-, пятиугольная, острые края и вершина. Максимальная высота пирамиды 1,5 км.

Официальные представители НАСА опровергают версию исскуственного происхождения марсианских аномалий в области Цидония. Они утверждают, что, скорее всего, "Лицо" - обыкновенная гора, которая напоминает лицо из-за необычного рельефа своей поверхности, а также случайной игры света и тени в момент съемки. Наличие же "пирамид" они объясняют или той же игрой света и тени, или же вулканическими образованиями.

Из-за большого ажиотажа, разгоревшегося вокруг "Лица" было решено провести повторное фотографирование области Цидония. 8 апреля 2001 года "Марс Глобал Сервейер" в 20:54 (UTC), пролетел так, что бы он мог захватить "Лицо", находящееся на расстоянии 165 км в стороне и на дистанции 450 км. Полученное фото имеет разрешение 2 метра на точку. (Если бы на Марсе присутствовали объекты размером с обычный пассажирский реактивный самолет, то они были бы различимы в таком масштабе).
Черная дыра!

ЧЕРНАЯ ДЫРА – область пространства, в которой гравитационное притяжение настолько сильно, что ни вещество, ни излучение не могут эту область покинуть. Для находящихся там тел вторая космическая скорость (скорость убегания) должна была бы превышать скорость света, что невозможно, поскольку ни вещество, ни излучение не могут двигаться быстрее света. Поэтому из черной дыры ничто не может вылететь. Границу области, за которую не выходит свет, называют «горизонтом событий», или просто «горизонтом» черной дыры.

Чтобы поле тяготения смогло «запереть» излучение, создающая это поле, масса (M) должна сжаться до объема с радиусом, меньшим «гравитационного радиуса» rg = 2GM/c2 (гравитационная постоянная G = 6,672 ґ 10–11 м3кг–1с–2 и скорость света c = 299 792 458 м/с). Значение гравитационного радиуса чрезвычайно мало по сравнению с привычным размером физических тел. Например, для Солнца с массой около 2 ґ 1030 кг и радиусом около 700 тыс. км значение rg » 3 км. А для Земли (M = 6 ґ 1024 кг) значение rg » 1 см. По этой причине создать и исследовать черную дыру в лаборатории практически невозможно: чтобы тело любой разумной массы (даже в миллионы тонн) стало черной дырой, его нужно сжать до размера, меньшего, чем размер протона или нейтрона, поэтому свойства черных дыр пока изучаются только теоретически.

Однако расчеты показывают, что тела астрономического масштаба (например, массивные звезды) после истощения в них термоядерного топлива могут под действием собственного тяготения сжиматься до размера своего гравитационного радиуса. Поиск таких объектов ведется уже более 40 лет, и сейчас можно с большой уверенностью указать несколько весьма вероятных кандидатов в черные дыры с массами от единиц до миллиардов масс Солнца. Однако их изучение затруднено огромными расстояниями от Земли. И хотя сам факт существования черных дыр уже трудно подвергать сомнению, практическое изучение их свойств еще впереди.


История идеи о черных дырах. Английский геофизик и астроном Джон Мичелл (J.Michell, 1724–1793) предположил, что в природе могут существовать столь массивные звезды, что даже луч света не способен покинуть их поверхность. Используя законы Ньютона, Мичелл рассчитал, что если бы звезда с массой Солнца имела радиус не более 3 км, то даже частицы света (которые он, вслед за Ньютоном, считал корпускулами) не могли бы улететь далеко от такой звезды. Поэтому такая звезда казалась бы издалека абсолютно темной. Эту идею Мичелл представил на заседании Лондонского Королевского общества 27 ноября 1783. Так родилась концепция «ньютоновской» черной дыры.

Такую же идею высказал в своей книге Система мира (1796) французский математик и астроном Пьер Симон Лаплас. Простой расчет позволил ему написать: «Светящаяся звезда с плотностью, равной плотности Земли, и диаметром, в 250 раз большим диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми». Однако масса такой звезды должна была бы в десятки миллионов раз превосходить солнечную. А поскольку дальнейшие астрономические измерения показали, что массы реальных звезд не очень сильно отличаются от солнечной, идея Митчела и Лапласа о черных дырах была забыта.

Во второй раз ученые «столкнулись» с черными дырами в 1916, когда немецкий астроном Карл Шварцшильд получил первое точное решение уравнений только что созданной тогда Альбертом Эйнштейном релятивистской теории гравитации – общей теории относительности (ОТО). Оказалось, что пустое пространство вокруг массивной точки обладает особенностью на расстоянии rg от нее; именно поэтому величину rg часто называют «шварцшильдовским радиусом», а соответствующую поверхность (горизонт событий) – шварцшильдовской поверхностью. В следующие полвека усилиями теоретиков были выяснены многие удивительные особенности решения Шварцшильда, но как реальный объект исследования черные дыры еще не рассматривались.

Правда, в 1930-е, после создания квантовой механики и открытия нейтрона, физики исследовали возможность формирования компактных объектов (белых карликов и нейтронных звезд)как продуктов эволюции нормальных звезд. Оценки показали, что после истощения в недрах звезды ядерного топлива, ее ядро может сжаться превратиться в маленький и очень плотный белый карлик или же в еще более плотную и совсем крохотную нейтронную звезду.

В 1934 работавшие в США европейские астрономы Фриц Цвикки и Вальтер Бааде выдвинули гипотезу – вспышки сверхновых представляют собой совершенно особый тип звездных взрывов, вызванных катастрофическим сжатием ядра звезды. Так впервые родилась идея о возможности наблюдать коллапс звезды. Бааде и Цвикки высказали предположение, что в результате взрыва сверхновой образуется сверхплотная вырожденная звезда, состоящая из нейтронов. Расчеты показали, что такие объекты действительно могут рождаться и быть устойчивыми, но лишь при умеренной начальной массе звезды. Но если масса звезды превышает три массы Солнца, то уже ничто не сможет остановить ее катастрофического коллапса.

В 1939 американские физики Роберт Оппенгеймер и Хартланд Снайдер обосновали вывод, что ядро массивной звезды должно безостановочно коллапсировать в предельно малый объект, свойства пространства вокруг которого (если он не вращается) описываются решением Шварцшильда. Иными словами, ядро массивной звезды в конце ее эволюции должно стремительно сжиматься и уходить под горизонт событий, становясь черной дырой. Но поскольку такой объект (как говорили тогда, «коллапсар», или «застывшая звезда») не излучает электромагнитные волны, то астрономы понимали, что обнаружить его в космосе будет невероятно трудно и поэтому долго не приступали к поиску.

Поскольку никакой носитель информации не способен выйти из-под горизонта событий, внутренняя часть черной дыры причинно не связана с остальной Вселенной, происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. В то же время, вещество и излучение, падающие снаружи на черную дыру, свободно проникают внутрь через горизонт. Можно сказать, что черная дыра все поглощает и ничего не выпускает. По этой причине и родился термин «черная дыра», предложенный в 1967 американским физиком Джоном Арчибальдом Уилером.


Формирование черных дыр. Самый очевидный путь образования черной дыры – коллапс ядра массивной звезды. Пока в недрах звезды не истощился запас ядерного топлива, ее равновесие поддерживается за счет термоядерных реакций (превращение водорода в гелий, затем в углерод, и т.д., вплоть до железа у наиболее массивных звезд). Выделяющееся при этом тепло компенсирует потерю энергии, уходящей от звезды с ее излучением и звездным ветром. Термоядерные реакции поддерживают высокое давление в недрах звезды, препятствуя ее сжатию под действием собственной гравитации. Однако со временем ядерное топливо истощается и звезда начинает сжиматься.

Наиболее быстро сжимается ядро звезды, при этом оно сильно разогревается (его гравитационная энергия переходит в тепло) и нагревает окружающую его оболочку. В итоге звезда теряет свои наружные слои в виде медленно расширяющейся планетарной туманности или катастрофически сброшенной оболочки сверхновой. А судьба сжимающегося ядра зависит от его массы. Расчеты показывают, что если масса ядра звезды не превосходит трех масс Солнца, то она «выигрывает битву с гравитацией»: его сжатие будет остановлено давлением вырожденного вещества, и звезда превратится в белый карлик или нейтронную звезду. Но если масса ядра звезды более трех солнечных, то уже ничто не сможет остановить его катастрофический коллапс, и оно быстро уйдет под горизонт событий, став черной дырой. Как следует из формулы для rg, черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км.

Астрономические наблюдения хорошо согласуются с этими расчетами: все компоненты двойных звездных систем, проявляющие свойства черных дыр (в 2005 их известно около 20), имеют массы от 4 до 16 масс Солнца. Теория звездной эволюции указывает, что за 12 млрд. лет существования нашей Галактики, содержащей порядка 100 млрд. звезд, в результате коллапса наиболее массивных из них должно было образоваться несколько десятков миллионов черных дыр. К тому же, черные дыры очень большой массы (от миллионов до миллиардов масс Солнца)могут находиться в ядрах крупных галактик, в том числе, и нашей. Об этом свидетельствуют астрономические наблюдения, хотя пути формирования этих гигантских черных дыр не вполне ясны.

Если в нашу эпоху высокая плотность вещества, необходимая для рождения черной дыры, может возникнуть лишь в сжимающихся ядрах массивных звезд, то в далеком прошлом, сразу после Большого взрыва, с которого около 14 млрд. лет назад началось расширение Вселенной, высокая плотность материи была повсюду. Поэтому небольшие флуктуации плотности в ту эпоху могли приводить к рождению черных дыр любой массы, в том числе и малой. Но самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. «Первичные черные дыры» с массой более 1012 кг могли сохраниться до наших дней. Самые мелкие из них, массой 1012 кг (как у небольшого астероида), должны иметь размер порядка 10–15 м (как у протона или нейтрона).

Наконец, существует гипотетическая возможность рождения микроскопических черных дыр при взаимных соударениях быстрых элементарных частиц. Таков один из прогнозов теории струн – одной из конкурирующих сейчас физических теорий строения материи. Теория струн предсказывает, что пространство имеет более трех измерений. Гравитация, в отличие от прочих сил, должна распространяться по всем этим измерениям и поэтому существенно усиливаться на коротких расстояниях. При мощном столкновении двух частиц (например, протонов) они могут сжаться достаточно сильно, чтобы родилась микроскопическая черная дыра. После этого она почти мгновенно разрушится («испарится»), но наблюдение за этим процессом представляет для физики большой интерес, поскольку, испаряясь, дыра будет испускать все существующие в природе виды частиц. Если гипотеза теории струн верна, то рождение таких черных дыр может происходить при столкновениях энергичных частиц космических лучей с атомами земной атмосферы, а также в наиболее мощных ускорителях элементарных частиц.
Свойства черных дыр.

Вблизи черной дыры напряженность гравитационного поля так велика, что физические процессы там можно описывать только с помощью релятивистской теории тяготения. Согласно ОТО, пространство и время искривляются гравитационным полем массивных тел, причем наибольшее искривление происходит вблизи черных дыр. Когда физики говорят об интервалах времени и пространства, они имеют в виду числа, считанные с каких-либо физических часов и линеек. Например, роль часов может играть молекула с определенной частотой колебаний, количество которых между двумя событиями можно называть «интервалом времени».

Важно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки, что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория.

Если бы можно было наблюдать в телескоп за звездой в момент ее превращения в черную дыру, то сначала было бы видно, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть пока окончательно не потухнет. Это происходит потому, что, преодолевая силу тяжести, фотоны теряют энергию и им требуется все больше времени, чтобы дойти до нас. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь любого наблюдателя, даже расположенного сравнительно близко к звезде (и при этом фотоны полностью потеряют свою энергию). Следовательно, мы никогда не дождемся этого момента и, тем более, не увидим того, что происходит со звездой под горизонтом событий, но теоретически этот процесс исследовать можно.

Расчет идеализированного сферического коллапса показывает, что за короткое время вещество под горизонтом событий сжимается в точку, где достигаются бесконечно большие значения плотности и тяготения. Такую точку называют «сингулярностью». Более того, математический анализ показывает, что если возник горизонт событий, то даже несферический коллапс приводит к сингулярности. Однако, все это верно лишь в том случае, если общая теория относительности применима вплоть до очень малых пространственных масштабов, в чем пока нет уверенности. В микромире действуют квантовые законы, а квантовая теория гравитации еще не создана. Ясно, что квантовые эффекты не могут остановить сжатие звезды в черную дыру, а вот предотвратить появление сингулярности они могли бы.

Изучая фундаментальные свойства материи и пространства-времени, физики считают исследование черных дыр одним из важнейших направлений, поскольку вблизи черных дыр проявляются скрытые свойства гравитации. Для поведения вещества и излучения в слабых гравитационных полях различные теории тяготения дают почти неразличимые прогнозы, однако в сильных полях, характерных для черных дыр, предсказания различных теорий существенно расходятся, что дает ключ к выявлению лучшей среди них. В рамках наиболее популярной сейчас теории гравитации – ОТО Эйнштейна – свойства черных дыр изучены весьма подробно. Вот некоторые важнейшие из них:

1) Вблизи черной дыры время течет медленнее, чем вдали от нее. Если удаленный наблюдатель бросит в сторону черной дыры зажженный фонарь, то увидит, как фонарь будет падать все быстрее и быстрее, но затем, приближаясь к поверхности Шварцшильда, начнет замедляться, а его свет будет тускнеть и краснеть (поскольку замедлится темп колебания всех его атомов и молекул). С точки зрения далекого наблюдателя фонарь практически остановится и станет невидим, так и не сумев пересечь поверхность черной дыры. Но если бы наблюдатель сам прыгнул туда вместе с фонарем, то он за короткое время пересек бы поверхность Шварцшильда и упал к центру черной дыры, будучи при этом разорван ее мощными приливными гравитационными силами, возникающими из-за разницы притяжения на разных расстояниях от центра.

2) Каким бы сложным ни было исходное тело, после его сжатия в черную дыру внешний наблюдатель может определить только три его параметра: полную массу, момент импульса (связанный с вращением) и электрический заряд. Все остальные особенности тела (форма, распределение плотности, химический состав и т.д.)в ходе коллапса «стираются». То, что для стороннего наблюдателя структура черной дыры выглядит чрезвычайно простой, Джон Уилер выразил шутливым утверждением: «Черная дыра не имеет волос».

В процессе коллапса звезды в черную дыру за малую долю секунды (по часам удаленного наблюдателя) все ее внешние особенности, связанные с исходной неоднородностью, излучаются в виде гравитационных и электромагнитных волн. Образовавшаяся стационарная черная дыра «забывает» всю информацию об исходной звезде, кроме трех величин: полной массы, момента импульса (связанного с вращением) и электрического заряда. Изучая черную дыру, уже невозможно узнать, состояла ли исходная звезда из вещества или антивещества, была ли она вытянутой или сплюснутой и т.п. В реальных астрофизических условиях заряженная черная дыра будет притягивать к себе из межзвездной среды частицы противоположного знака, и ее заряд быстро станет нулевым. Оставшийся стационарный объект либо будет невращающейся «шварцшильдовой черной дырой», которая характеризуется только массой, либо вращающейся «керровской черной дырой», которая характеризуется массой и моментом импульса.

3) Если исходное тело вращалось, то вокруг черной дыры сохраняется «вихревое» гравитационное поле, увлекающее все соседние тела во вращательное движение вокруг нее. Поле тяготения вращающейся черной дыры называют полем Керра (математик Рой Керр в 1963 нашел решение соответствующих уравнений). Этот эффект характерен не только для черной дыры, но для любого вращающегося тела, даже для Земли. По этой причине размещенный на искусственном спутнике Земли свободно вращающийся гироскоп испытывает медленную прецессию относительно далеких звезд. Вблизи Земли этот эффект едва заметен, но вблизи черной дыры он выражен гораздо сильнее: по скорости прецессии гироскопа можно измерить момент импульса черной дыры, хотя сама она не видна.

Чем ближе мы подходим к горизонту черной дыры, тем сильнее становится эффект увлечения «вихревым полем». Прежде чем достичь горизонта, мы окажемся на поверхности, где увлечение становится настолько сильным, что ни один наблюдатель не может оставаться неподвижным (т. е. быть «статическим») относительно далеких звезд. На этой поверхности (называемой пределом статичности) и внутри нее все объекты должны двигаться по орбите вокруг черной дыры в том же направлении, в котором вращается сама дыра. Независимо от того, какую мощность развивают его реактивные двигатели, наблюдатель внутри предела статичности никогда не сможет остановить свое вращательное движение относительно далеких звезд.

Предел статичности всюду лежит вне горизонта и соприкасается с ним лишь в двух точках, там, где они оба пересекаются с осью вращения черной дыры. Область пространства-времени, расположенная между горизонтом и пределом статичности, называется эргосферой. Объект, попавший в эргосферу, еще может вырваться наружу. Поэтому, хотя черная дыра «все съедает и ничего не отпускает», тем не менее, возможен обмен энергией между ней и внешним пространством. Например, пролетающие через эргосферу частицы или кванты могут уносить энергию ее вращения.

4) Все вещество внутри горизонта событий черной дыры непременно падает к ее центру и образует сингулярность с бесконечно большой плотностью. Английский физик Стивен Хоукинг определяет сингулярность как «место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства-времени».

5) Кроме этого С.Хоукинг открыл возможность очень медленного самопроизвольного квантового «испарения» черных дыр. В 1974 он доказал, что черные дыры (не только вращающиеся, но любые) могут испускать вещество и излучение, однако заметно это будет лишь в том случае, если масса самой дыры относительно невелика. Мощное гравитационное поле вблизи черной дыры должно рождать пары частица-античастица. Одна из частиц каждой пары поглощается дырой, а вторая испускается наружу. Например, черная дыра с массой 1012 кг должна вести себя как тело с температурой 1011 К, излучающее очень жесткие гамма-кванты и частицы. Идея об «испарении» черных дыр полностью противоречит классическому представлению о них как о телах, не способных излучать.
Пиранька писал(а):Свойства черных дыр.

podmigivanie
Пиранька писал(а):Марсианские аномалии - следы пришельцев?
Интересная статейка..Спасибкиpodmigivanie
На Титане есть нефть


Планеты Солнечной системы богаты полезными ископаемыми. Это открытие сделал американский космический аппарат «Кассини». На спутнике Сатурна Титане он обнаружил признаки углеводородов.

В космосе есть нефть. Так утверждают многие популярные научные издания. Поводом для этого послужили исследования учёных из США. Они сделали открытие: на спутнике Сатурна Титане нашли озёра и моря из метана и этана.

«Климатическая система Титана очень богата, и если брать аналогию с нашей Землей, то, если мы заменим воду на метан, на углеводороды, мы получим то, что есть на Титане», — пояснил Александр Родин, сотрудник МФТИ и Института космических исследований РАН.

В экспедицию на Титан отправился американский аппарат «Кассини». Летел он туда 7 лет. Так что сведения учёные смогли получить только сейчас. Однако сенсации может и не быть. Специалисты утверждают: нефти (в привычном понимании) на спутнике Сатурна нет. Нет так называемых «длинных» предельных углеводородов. Но есть очень много сложной органики в твердом состоянии.

«Действительно, очень много углеводородов. Если мы их начнем возить, встанет вопрос, куда мы будем девать продукты, в первую очередь, углекислый газ. Известно, что от сжигания нашей нефти у нас образуется углекислый газ, который приводит к уже наблюдаемым изменениям климата здесь, на Земле», — говорит Александр Родин.

За полезными ископаемыми реальнее отправиться к нашей ближайшей соседке. На Луне, которая лишена атмосферы и подвергается прямому воздействию солнечного ветра, минералы образуются в условиях, невозможных на Земле. Интересен лунный гелий-3, который многие считают ценным сырьем для будущей термоядерной энергетики. Однако вывозить его можно только в жидком состоянии.

«На Земле надо создать термоядерные реакторы, работающие по этому принципу. Но это тоже громадные затраты», — пояснил Игорь Бармин , генеральный конструктор конструкторского бюро общего машиностроения.

«Перенесение топливной индустрии с Земли на Луну – это задача века. И она будет решена. К сожалению, не все мы увидим это, но я убежден, что так дело и сложится», — говорит Эрик Галимов , директор института Геохимиии РАН.

Пока добывать полезные ископаемые на Луне, и тем более на Титане, невыгодно, полагают специалисты. Планеты Солнечной системы нуждаются в более детальном изучении. Так что несметные богатства других планет в ближайшие десятилетия человечеству будут доступны только в виде знаний – на самом деле ценнейшего ресурса, как показывает вся человеческая история.
Что наша жизнь – дыра!
Вселенная, судя по всему, является единственным «настоящим» фракталом, имея нулевую бесконечную плотность
2004-10-13 / Сергей Давыдович Хайтун - кандидат физико-математических наук, старший научный сотрудник Института истории естествознания и техники РАН.
[Изображение: 222-15-2.jpg]
Мы живем внутри черной дыры. Это почти очевидно.
Мауриц Эшер, «Звезды», 1948 г.


Наблюдаемая нами сегодня Вселенная зародилась около 15 млрд. лет назад в результате Большого взрыва. Так как никакой сигнал не может распространяться быстрее света, то у нас не может быть информации о том, как устроен мир на расстояниях, превышающих 15 млрд. световых лет. То есть мир ограничен для нас горизонтом видимости.

Наука не терпит пустоты, недостаток наблюдательной базы восполняется спекулятивными предположениями. Космологи легко говорят о замкнутой Вселенной, которая в начале Большого взрыва была много меньше грецкого ореха и которой закон сохранения энергии не запрещает возникновения из вакуумоподобного состояния физической среды. Масса замкнутой космической системы масштаба нашей Метагалактики, считают некоторые, равна очень малой величине, что делает возможным размещение метагалактик в элементарных частицах. Обсуждаются дополнительные пространственные и/или временные измерения. И т.д. и т.п.

Отказ от слишком сильных гипотез позволил бы упростить космологическую картину мира, не вступая в противоречие с данными наблюдения в пределах горизонта видимости. В основание нашего рассмотрения положена одна-единственная гипотеза.
Гипотеза: Вселенная фрактальна



Плотность космических объектов стремительно падает с их размерами (звезда, скопление звезд, галактика, скопление галактик, наша Метагалактика). Экстраполируя эту последовательность, Г.М. Идлис пришел в 1956 г. к выводу, что «бесконечная» плотность Вселенной равна нулю. Эта идея и новейшие представления о фрактальности Вселенной подтверждают друг друга. Дело в том, что плотность всякого фрактала, расположенного в реальном («нашем») трехмерном пространстве, тождественно равна нулю. Не вдаваясь в математические детали, которые можно найти в моей книге «Механика и необратимость» (М., 1996), поясню эту мысль на простом примере.

Представим себе бесконечно тонкий лист бумаги, которым мы пытаемся заполнить комнату, вырезая из него бесконечно узкую полоску. Такой лист бумаги – двухмерный, его объем и масса равны нулю. Понятно, что заполнить им трехмерный объем толком не удастся, бумага образует «всюду пустую» структуру нулевой плотности.

Таковы все «настоящие» фракталы – они обладают «всюду пустой» структурой, которая при проникновении в нее «расступается» до бесконечности. Реальные системы бесконечного углубления в свою структуру не позволяют; на каком-то конечном шаге структура, будь то, скажем, угольная сажа или кровеносная система человека, теряет свой «фрактальный» вид. «Настоящие» фракталы возникают только «на бумаге», реальные структуры лишь «фракталоподобны».

Позволяя – из-за своей бесконечности – бесконечное (мысленное) проникновение в свою структуру, Вселенная, судя по всему, является единственным «настоящим» фракталом, имея нулевую бесконечную плотность.
Первое следствие: Вселенная не переживала Большого взрыва.

На протяжении ХХ века космологи грешили явным или неявным отождествлением нашей Метагалактики со всей Вселенной, говоря о расширении Вселенной, модели горячей Вселенной и т.д. Между тем доказательств того, что расширяется вся Вселенная, не существует. Напротив, если Вселенная фрактальна, то она в принципе не может расширяться.
Имея нулевую плотность, фрактальная Вселенная незамкнута. Любой конечный ее фрагмент из-за отличия от нуля его плотности нестационарен, вся же бесконечная Вселенная, имея нулевую плотность, стационарна в том смысле, что все ее фрагменты не могут одновременно расширяться или сжиматься.
Перенесенный на нашу Метагалактику, Большой взрыв теряет свою загадочность. Легко представить себе, что наша Метагалактика ранее сжималась и, дойдя до некоторой стадии сжатия, стала расширяться. Взорвалась.
В вечной и бесконечной Вселенной, расположенной в едином трехмерном пространстве, отпадает нужда в дополнительных пространственных и временных измерениях. Разбросанные по бесконечной Вселенной метагалактики различаются размерами и массой, кривизной пространства-времени (замкнутостью или незамкнутостью), скоростью расширения или сжатия и т.д., однако значения мировых констант, полагаем мы, неизменны на всем бесконечном протяжении Вселенной и во времени.
Вытекающее из гипотезы о фрактальности Вселенной простое ее устройство упрощает и трактовку антропного принципа. Наша Метагалактика и на самом деле приспособлена к человеку, но это только потому, что она одна из многих, среди которых имеются и «безжизненные» и/или «нечеловеческие». Ситуация с метагалактиками подобна ситуации с планетами Солнечной системы. Вместо того чтобы утверждать, будто Земля специально приспособлена под человека, более разумно говорить, что условия на ней сложились оптимальными для закономерного появления человека. На других планетах условия сложились иными, и человек там не появился.
Из-за бесконечности Вселенной количество очагов жизни в ней бесконечно, весь вопрос в том, как далеко они отстоят друг от друга.

Второе следствие: наша Метагалактика – черная дыра.
Если что и загадочно в нашей Метагалактике, так это ее крупномасштабная однородность, связанная с отсутствием центра расширения. Пока мы считаем, что Большой взрыв претерпела вся Вселенная, это легко объясняется космологическим принципом, согласно которому разные ее участки (и разные направления в ней) равноправны. Поскольку же мы полагаем, что Большой взрыв претерпела лишь наша конечная Метагалактика, то следует признать и то, что в ее пределах космологический принцип не работает, как он не работает в пределах других конечных метагалактик.
Когда в однородной среде или в вакууме взрывается тело конечных размеров, будь то сверхновая или тротиловый заряд, то такой взрыв имеет центр и радиальные градиенты давления, плотности и температуры. Ничего подобного при расширении нашей Метагалактики не наблюдается, и это требует объяснения. Точка зрения автора этих строк состоит в том, что наша Метагалактика макрооднородна, потому что является черной дырой.
Сначала несколько слов о самой однородности наблюдаемого мира, фиксируемой на расстояниях порядка или больших 300 млн. световых лет. Как она сочетается с фрактальностью наблюдаемого мира, предполагающей его существенную неоднородность?
Все не так сложно. О макрооднородности наблюдаемого мира можно говорить, сравнивая фрагменты равного объема, и нельзя, сравнивая фрагменты разных объемов. С ростом объема сравниваемых фрагментов их плотность падает, достаточно же большие фрагменты наблюдаемого мира равного объема имеют равные плотности.
Переходим к черным дырам. Их обычно ассоциируют со сверхсжатыми массами. Между тем черной дырой может быть тело со сколь угодно малой плотностью, лишь бы она (плотность) была больше некоторой критической плотности, обратно пропорциональной квадрату радиуса тела.
Расчеты показывают, что черная дыра с радиусом Земли должна иметь плотность, на 26 порядков превышающую плотность воды. Плотность черной дыры с радиусом Солнца должна превышать плотность воды на 17 порядков. Плотность черной дыры с радиусом нашей Галактики может быть на 7 порядков меньше плотности воды, а черная дыра с радиусом нашей Метагалактики может иметь плотность, меньшую плотности воды примерно на 30 порядков. Самое странное, что реальная плотность нашей Метагалактики очень близка к этой критической плотности, хотя и несколько меньше ее.
Внутреннее пространство черной дыры замкнуто гравитацией. Находящиеся внутри нее тела и излучения в своем движении как бы отражаются от ее внутренней стороны, сами «не замечая» того и продолжая свое движение по прямой (точнее – по геодезической линии). Из-за безграничности предстающего перед внутренним наблюдателем пространства он не обнаружит центра сферы, внутри которой находится, а все ее внутренние точки для него равноправны.
В качестве геометрической аналогии трехмерного замкнутого безграничного пространства иногда используется двухмерная поверхность трехмерной сферы. Используем эту аналогию и мы, только в нашем случае сфера еще и расширяется.
Поместим на ее поверхность двухмерный газ взаимодействующих точек, имитирующий «газ» звезд и галактик. Если эти взаимодействия подобны реальным, то точки будут образовывать фракталоподобные структуры. Из-за симметрии задачи газ на сферической поверхности не будет иметь выделенных участков и направлений, находящиеся на ней равные по площади участки будут иметь примерно одинаковую плотность точек, тогда как участки большей площади будут иметь меньшую плотность. По мере расширения сферы точки разбегаются, не имея центра расширения.
Все это, только в трехмерном пространстве, мы и наблюдаем в нашей Метагалактике.
Экспериментальная проверка гипотезы

В 1998–1999 годах было установлено, что на расстояниях порядка или больших 1 млрд. световых лет потускнение сверхновых с расстоянием происходит быстрее, чем это дает теория. Связываемое с этим ускорение космического расширения трактуется многими как следствие космического расталкивания, производимого космическим вакуумом с плотностью, вдвое превышающей плотность вещества.
Прежде чем прибегать к столь сильной гипотезе, следует испытать менее сильные. Космическое ускорение может быть истолковано как эффективная добавка расстояния, возникающая в процессе постепенного раскрытия нашей Метагалактики, которое началось с пересечением ею в ходе расширения критического значения радиуса. Маловероятно, чтобы Земля находилась в центре нашей Метагалактики, поэтому космическое ускорение должно быть сферически асимметричным. Если ускорение разбегания галактик по разным направлениям окажется разным по абсолютной величине, то это будет иметь единственно возможное объяснение – именно то, о каком мы здесь говорим.
Вселенная как додекаэдр
[Изображение: 053.jpg]

В стародавние времена люди думали» что 3емля плоская и стоит на трех китах, затем выяснилось, что наша ойкумена круглая и, если плыть все время на запад, то через некоторое время вернешься в исходную точку с востока. Похожим образом изменялись и воззрения на Вселенную. В свое время Ньютон полагал, что пространство плоское и бесконечное. Эйнштейн разрешил нашему Миру быть не только безграничным и кривым, но и замкнутым. Новейшие данные, полученные в процессе исследования реликтового излучения, свидетельствуют о том, что Вселенная вполне может быть замкнута сама на себя. Получается, что если все время лететь от 3емли, то в какой-то момент начнешь к ней приближаться и в конце концов вернешься назад, обойдя всю Вселенную и совершив кругосветное путешествие, подобно тому, как один из кораблей Магеллана, обогнув весь земной шар, приплыл в испанский порт Санлукар-де-Баррамеда.

Гипотеза о том, что наша Вселенная родилась в результате Большого взрыва, сейчас считается общепринятой. Материя вначале была очень горячей, плотной и быстро расширялась. Затем температура Вселенной понизилась до нескольких тысяч градусов. Вещество в этот момент состояло из электронов, протонов и альфа-частиц (ядер гелия), то есть представляло собой сильно ионизированный газ — плазму, непрозрачную для света и любых электромагнитных волн. Начавшаяся в это время рекомбинация (соединение) ядер и электронов, то есть образование нейтральных атомов водорода и гелия, кардинально изменила оптические свойства Вселенной. Она стала прозрачной для большинства электромагнитных волн.

Таким образом, изучая свет и радиоволны, можно увидеть только то, что произошло после рекомбинации, а все то, что случилось раньше, закрыто он нас своеобразной «огненной стеной» ионизованного вещества. Заглянуть гораздо глубже в историю Вселенной можно только в том случае, если мы научимся регистрировать реликтовые нейтрино, для которых горячее вещество стало прозрачным гораздо раньше, и первичные гравитационные волны, для которых материя любой плотности — не преграда, однако это дело будущего, причем далеко не самого близкого.

С момента образования нейтральных атомов наша Вселенная расширилась примерно в 1 000 раз, и излучение эпохи рекомбинации сегодня наблюдается на Земле как реликтовый микроволновый фон с температурой около трех градусов Кельвина. Этот фон, впервые обнаруженный в 1965 году при испытаниях большой радиоантенны, практически одинаков во всех направлениях. По современным данным, реликтовых фотонов в сто миллионов раз больше, чем атомов, поэтому наш мир просто купается в потоках сильно покрасневшего света, излученного еще в самые первые минуты жизни Вселенной.
В сентябре 2012 года землю ждет «солнечный удар»


Ученые выяснили, чем пахнет наша Вселенная

Общество: Наука
В сентябре 2012 года землю ждет «солнечный удар» — ученые
12:36 РИА «Новости»
В сентябре 2012 года может произойти серьезная техногенная катастрофа — так называемая «идеальная солнечная» электромагнитная буря. Ученые из американской Национальной Академии наук считают, что ее энергия способна преодолеть «защиту» Земли и уничтожить ее «электроэнергетическую инфраструктуру», сообщают «Известия» со ссылкой на Daily Mail.

Возникающий в результате гигантских ядерных взрывов на Солнце поток ионизированных частиц, истекающий из солнечной короны, постоянно атакует нашу Землю. Однако атмосфера и магнитное поле планеты защищают ее от влияния этих частиц.

По подсчетам американских ученых, осенью 2012 года, когда Солнце будет на максимуме своей активности, оно будет способно «прорвать» естественные защитные средства планеты и, в частности, парализовать электроэнергетическую систему Земли, уничтожить компьютерную технику, поразить основные объекты городской инфраструктуры. В результате все это может привести к длительному экономическому кризису.

Материал подготовлен интернет-редакцией http://www.rian.ru на основе информации открытых источников
URL ссылки